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Kinematically consistent velocities are derived for use with finite difference hydro- 
dynamic calculations in cylindrical coordinates. The velocities satisfy mass conservation 
and the circulation theorem both locally and globally. When combined with a con- 
serving finite difference form of the hydrodynamic transport equations using vorticity- 
streamfunction variables, a fully conserving difference approximation results. An 
illustrative example involving thermal convection of an infinite Prandtl number, variable 
viscosity fluid is presented. Kinematically consistent velocities are found to be essential 
for obtaining solutions free from physical anomalies. The approach is readily generalized 
to other curvilinear coordinate systems. 

The desirability of using conserving difference approximations for the hydro- 
dynamic transport equations has long been recognized (Fromm [l]). In Cartesian 
coordinates, it is relatively simple to construct difference approximations that 
conserve mass, vorticity, and energy. However, in curvilinear coordinates this is 
more difficult to achieve. Two separate aspects must be considered: conservation 
of thermal energy and vorticity by the transport equations, and conservation of 
mass. The first aspect has been adequately discussed in the literature and conserving 
difference approximations for curvilinear coordinates are available. However, 
the second aspect has not been treated fully and it forms the subject of the present 
paper. The velocity fields used for a streamfunction-vorticity formulation of the 
hydrodynamic equations must not only conserve mass, but they must also satisfy 
the circulation theorem. In this paper, new finite difference approximations for 
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velocity fields are developed that satisfy the kinematic constraints imposed by 
conservation of mass and the circulation theorem (kinematically consistent 
velocities). Although formulated here in cylindrical coordinates, the approach 
is applicable to any curvilinear coordinate system. 

The physical problem that motivated the present study is that of steady-state 
thermal convection in the Earths mantle. The problem is for a large Prandtl 
number and a variable viscosity, which depends strongly on temperature and depth. 
Recent studies of variable viscosity convection include those of Turcotte et al. [7], 
Liang et al. [3], and Houston and DeBraemaker [2]. We have found that the use of 
currently available differencing techniques to obtain velocity fields resulted in 
physically anomalous flows for the present problem. The anomalies were eliminated 
by the use of kinematically consistent velocity fields. Application of the present 
method to a range of parameters representative of mantle convection is reported 
by Parmentier et al. [5]. 

MATHEMATICAL FORMULATION 

We will consider the axisymmetric motion of a viscous incompressible fluid in 
a cylindrical enclosure. The origin of the (x, r) coordinate system is at the center 
of the circular base. Velocity components in the axial and radial directions are 
denoted by u and v. With the Boussinesq approximation, the governing equations 
become 

where 

and 
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The various equations are respectively the continuity equation, the transport 
equations for temperature (O), and azimuthal vorticity (LJ, and the vorticity 
definition. The quantity v is a normalized kinematic viscosity, and gravity (g) is 
directed along the negative x-axis. 

A streamfunction (tj) is introduced by defining 

u = (l/r)(it#/lbr) 

1’ = -(l/r)(a$/&x). 
(54 

(5’4 

The continuity equation is then satisfied identically. Introducing the streamfunction 
definitions (5) into the vorticity definition (4) gives the streamfield equation 

0’~) = -r<. (6) 

Eqs. (5) and (6) replace Eqs. (1) and (4). 
The foregoing equations are written in nondimensional form using the enclosure 

height (h) as the length scale, the ratio /z~/K, (where K is the thermal diffusivity) as 
the time scale, and a characteristic temperature difference AT, as the temperature 
scale. The Raleigh and Prandtl numbers emerge as dimensionless, physical 
parameters: 

where 01 is the volume thermal expansion coefficient and y. is a reference value of 
the kinematic viscosity. 

CONSERVING FINITE DIFFERENCE APPROXIMATIONS AND THECIRCULATIONTHEOREM 

The transport equations (2) and (3) express local conservation of thermal energy 
and vorticity. The energy equation conserves thermal energy in an infinitesimal 
volume element (dV = 2nr dr dx), and the vorticity equation conserves vorticity 
for an infinitesimal area element in the x - r plane (dA = dx dr). In differential 
form the equations may be integrated to give global conservation equations for a 
prescribed region in space. If the finite difference forms of the transport equations 
satisfy local conservation on a grid volume, the difference approximations are 
called conserving. They can then be integrated or summed over the mesh without 
introducing spurious sources or sinks for the transported variables. Conserving 
difference approximations in cylindrical coordinates have been discussed by 
Torrance [6]. 
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Conserving approximation of the convection terms requires the introduction 
of transport velocities. Consider the element of area shown in Fig. 1, which 

FIG. 1. Notation for an interior gridpoint of a uniform spatial mesh in cylindrical coordin- 
ates. The grid volume is centered on the gridpoint. 

encloses a gridpoint (i,j). The faces of this grid volume are located midway between 
adjacent gridpoints. The transport velocities, denoted by (z& , ~$3, represent 
the volume flow through the faces of the grid volume and so are used to approxi- 
mate the convective flux of transported quantities. Also shown in Fig. 1 are grid- 
point velocities (24 6,5 , u~,~). Torrance [6] calculated gridpoint velocities from the 
streamfunction field by central difference approximations to Eq. (5): 

ui.i = <#i.i+I - #~.j-l)/~~3 dr (W 

ui.i = -(#i+l.i - $i-l.i)/2rj dx. (7b) 

The streatield equation (6) was also approximated by central differences. 
Transport velocities were defined by spatial interpolation of the gridpoint velocities 

6.j = (%A + uz+l,i)/2 (84 

C,j = C”i.j + vi,j+3/2. (W 

For an incompressible fluid, the transport velocities should conserve volume 
flow on the grid volume over which other transported variables are conserved. 
It can be shown that the transport velocities decked above conserve volume flow 
in Cartesian coordinates. If conservation is not satisfied a spurious volume source 
Q,,, is introduced in the grid volume. In cylindrical coordinates the volume source 
(in units of fluid volume produced per unit volume and time) is given by a flux 
balance as 
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Substituting (8) into (9) reveals a spurious volume source for interior grid volumes. 
The volume source can also be written 

(10) 

for small Ax, Ar, and Or/r?. This equation indicates that the volume source is 
strongest near the axis and in regions of large velocity gradients. In the limit 
Ar + 0, the volume source vanishes. 

The failure of transport velocities to conserve volume flow has led us to 
reconsider the formulation of finite difference approximations for velocities in 
cylindrical coordinates. In addition to conserving volume flow, velocities should 
satisfy the circulation theorem both locally and globally. The circulation theorem 
can be written 

s, 5 dA = 4 v . dl, (11) 

where A and 1 are the area and perimeter of the region of integration in the x - r 
plane. The differential form of the vorticity definition satisfies the circulation 
theorem identically. The finite difference approximations for velocity and vorticity 
fields should do so as well. Since the conditions imposed by volume flow conser- 
vation and the circulation theorem are kinematic in nature, we will refer to 
velocity fields that satisfy these conditions as kinematically consistent velocities. 

KINEMATICALLY CONSISTENT VELOCITY FIELDS 

Consider again the incremental volume of cross-sectional area Ax Ar containing 
the gridpoint (i, j) in Fig. 1. We begin by defining internodal velocities on the faces 
of the grid volume. The normal and tangential components of velocity are denoted 
by superscripts. The pair (ucj , ujsj) is on the i + l/2 face while the pair (uF,~ , z$J 
is on the j + l/2 face. 

Tangential Velocity Components and the Circulation Theorem 

We first consider the circulation theorem (11) and the relationship between 
vorticity and tangential velocity components that it implies. Approximation of 
the integrals leads to the following expression for the area-averaged value of 
vorticity in the grid volume 

5i.j = [(u:,j - &l,j) Ar - (& - &,j-J Ax]/Ax Ar. (12) 
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The area-averaged value is assigned to the gridpoint (i,j). This can also be 
recognized as a central difference approximation to Eq. (4). 

The circulation theorem may also be applied to half-size grid volumes adjacent 
to the boundaries. Adjacent to a solid boundary such as x = 0 (Fig. 2a), the 
circulation theorem gives 

to,.+ = 2[(&,j - Vo,3) rlr - <& - uLIX0x/2)l10x dr, (13) 

whereas along the axis r = 0 (Fig. 2b), 

(i,o = 2[(& - of-,,,)(dr/2) - (u:‘,, - ui,J 0x1/0x h. (14) 

The boundary velocities u~,~ and u~,~ appear in the last two equations. 

lb) 

t 
FIG. 2. Notation for boundary gridpoints. (a) At x = 0 boundary. (b) On the axis. 

Equations (12)-(14) are based on the circulation theorem and define difference 
approximations for the area-averaged vorticity for all grid volumes in a cylindrical 
region. Note that it is the area-averaged vorticity which is conserved by the 
vorticity transport equation. The formal accuracy of the expressions is second 
order. When appropriately defined tangential velocities are introduced into the 
equations, the circulation theorem will be satisfied globally because the contri- 
butions to the line integral of Eq. (11) from adjacent elements, cancel along all 
common boundaries. 

Since the faces of grid volumes are midway between mesh points of the grid, 
approximations for the tangential velocities in terms of streamfunction may be 
obtained from Eq. (5) as 
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Velocities at gridpoints are found by linear interpolation of the tangential velocities; 
on a uniform mesh 

This approach for defining gridpoint velocities was used by Fromm [l] in Cartesian 
coordinates. In Cartesian coordinates, it is equivalent to the central differences in 
Eq. (7). Note that this is not true in cylindrical coordinates. 

For interior gridpoints, application of the circulation theorem (12) and Eq. (15) 
gives the conventional central difference form of the streamfield equation 

(17) 

If gridpoint velocities defined by Eq. (7) are linearly interpolated to obtain the 
tangential velocities and these are then substituted into Eq. (12), a finite difference 
streamfield equation results. This finite difference equation is not the central 
difference form given by Eq. (17). 

Adjacent to a boundary such as x = 0 (Fig. 2a), the tangential velocity on the 
x = Ax/2 face of the grid volume is the same as that used for the adjacent interior 
grid volume. Other velocities for the boundary element are evaluated from the 
boundary conditions. For the case of a rigid, no-slip surface at x = 0, the appro- 
priate boundary conditions are Uo,j = r0.j = 0. The tangential velocity z& 
appearing in Fig. 2b is evaluated at the midheight (X = AX/~) of the vertical face 
by using a Taylor series expansion: 

t 
tiO.i = uO.i+l ‘2 + ($), j;l,z (+) + O@X~~. 

The subscripts on the right side denote spatial locations. The first two terms on the 
right are found to be zero by applying the continuity equation and the velocity 
boundary conditions. Substitution of the appropriate velocities into Eq. (13) gives 

Co., = -2Ch.j - +~o.i)/rdAx)~* 

Although this expression is second-order correct for the mean vorticity in the 
grid volume, it is only first order when applied to obtain boundary vorticity. 
Nevertheless, it is the only expression that is consistent with the interior vorticity 
field, thus allowing the circulation theorem to be satisfied. Various higher-order 
approximations are discussed by Orszag and Israeli [4] but these forms do not 
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satisfy the circulation theorem. Analysis similar to that above shows that at a free 
boundary 

5O.J = 0 (19) 

to the same order of accuracy as Eq. (18). 
Along the axis I = 0 (Fig. 2b), an analogous procedure is applied to obtain the 

area-averaged vorticity. The appropriate velocity boundary conditions are 
au/at- = v = 0. Consider first the tangential velocity vE,~ on the horizontal face 
.X + AX/~. Using a Taylor’s series expansion for UE,~ evaluated at the midpoint 
of the face (r = b/4), together with the continuity equation and the boundary 
conditions, gives 

r:,o = -(1/2)(au/ax),+l:3.,, W/4) + WY. (20) 

Consider next the tangential velocities on the vertical faces, z&o and u,,~ . The 
au/at- = 0 boundary condition can be satisfied in either of two equivalent ways: 
by equating z& and ui,O , or by using Eq. (15a) for z& and a two-point difference 
approximation for ui,O = (@#/arz),,O . Introducing these velocities into Eq. (14), 
the lowest-order terms cancel, giving 

(21) 

This expression is second-order correct for the area-averaged vorticity in the grid 
volume and also can be obtained by evaluating a Taylor’s series for 5 at the center 
of the grid volume. Setting the axis vorticity to zero 

satisfies Eq. (21) to first order and is consistent with the circulation theorem. 

Normal Velocity Components and Conservation of Mass 

For an incompressible fluid, mass or volume conservation is satisfied when the 
normal velocity components (transport velocities) appearing in Eq. (9) are defined 
in such a way that the volume source term Qi,, is identically zero. It is convenient 
to introduce streamfunction values I& , located at the corners of the grid volumes 
as shown in Fig. 1. In terms of the #* values, as yet undefined, we define transport 
velocities as 

n 
4.~ = ($2 - #&d/ri dr 

Vy,j = (@j - $El,j)/(rj + (h/2)) AX. 

(234 

(‘W 
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Substitution of these expressions into Eq. (9) confirms that volume flow is 
conserved. Along the axis with # = 0 at I’ = 0, volume flow is conserved by taking 

z$, = 4Gll(~~/2)3. (24) 

The #*-field is denned as a weighted average of the streamfunction at the 
four surrounding gridpoints 

This expression has been specialized to cylindrical coordinates by introducing 
two weighting coefficients aj, flj, and taking them to be uniform in the axial 
direction. In general, four coefficients depending on two coordinates may be 
introduced. 

The essential step in our analysis is in determinig the cy, /3 coefficients by 
imposing a set of consistency conditions. These require the transport velocity 
to approach the gridpoint velocity (Eq. (16)) as the mesh is retlned. That is 

I u:, -- Zli,, 1 - 0 1 vy3 - t1,3 1 - 0 I Ax, Ar --+ 0. (2W 
(2W 

In the cylindrical geometry, radius is defined as rl = jdr, and two limits are 
possible as Ar is relined. One limit is found by holding rj fixed, the second by 
holding j tied. 

Combining Eqs. (15), (16), (23), and (25), two expressions for the transport 
velocities may be obtained after some manipulation, as 

7% 

1’z .I -ai r*j+Ar/2 i 

ri 
) Z’i.1 + 8, ( 

rj + Ar 
rj f Ar/2 “‘~+l ’ 1 

The first of these expressions will satisfy the consistency condition (26) for both 
radial limits if 

aj+pj= 1. (27) 

At fixed r, , as Ar -+ 0, v,.~ approaches vi,j+l ; whereas at fixed j, both v,-, and 
vi,i+l approach zero. The expression for ut:j has been obtained by substituting 
Eq. (25) into Eq. (23a) and expanding in a Taylor’s series about x = i Ax. For 
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purposes of analysis, the resulting expression is substituted into Eq. (26a) along 
with the expanded equation for the gridpoint velocity (Eqs. (16a) plus (15a)). 

For the limit of ftxed rj , Ar + 0, Eq. (26a) is satisfied if ori = & = l/2. On the 
other hand, for the limit of fixed j, dr -+ 0, we find that the recursion relation 

p, = 1 + GY- 1) L-1 3 2j+ 1 (28) 

is the weakest condition that will satisfy the limit. In obtaining the recursion 
formula the relation # cc r2 has been used near the axis. For grid volumes on the 
axis, j = 0, we apply Eqs. (24) and (25) with 4 = 0 at r = 0 to obtain /3,, = l/4. 
With # = 0 at r = 0, the value CL,, need not be defined, but we take (Ye = 314 to 
agree with Eq. (27). 

The sequence of aj , flj values described above is tabulated in Table I. The 
sequence of values for largej, obtained from the limit of fixedj, dr -+ 0, approaches 
the value obtained from the limit of fixed rj , Ar --t 0. Transport velocities defined 
in this way conserve volume flow exactly and are consistent with the gridpoint 
velocity field as the mesh is refined. 

TABLE I 

Weighting Coefficients Appearing in Eq. (22) and Defined by Eqs. (27) and (28) 

314 114 
7112 5112 

11120 9120 
lSj2S 13128 
19/36 17136 
23144 21144 
27152 25152 

l/2 112 

Summarizing the kinematically consistent formulation of velocity fields, the 
gridpoint velocities (ui,, , c~,~) given by Eq. (16) provide an approximation of the 
fluid velocity field, and the transport velocities (u:,~, r&) approximate the con- 
vective fluxes for a grid volume. The transport velocities conserve mass flow for 
each grid volume. The tangential velocity field (L& , u:,J does not explicitly appear 
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in the tiite difference calculations, but provides the connecting link between the 
gridpoint velocities and the finite difference streamfield equation by way of the 
circulation theorem. Thus, the vorticity-streamfunction relations are uniquely 
defined. Approximations other than Eq. (18) for boundary vorticity, for example, 
would be inconsistent. Transport velocities are related to grid point velocities by 
the consistency conditions of Eq. (26). The grid point and transport velocities 
defined in this way are kinematically consistent in the sense that conservation of 
mass and the circulation theorem are simultaneously satisfied by the finite difference 
approximations. 

APPLICATION TO THERMAL CONVECTION 

Finite difference approximations of the transport equations are solved using a 
forward time difference with a conserving upwind differencing of the convection 
terms and central differencing of the diffusion terms. The streamfield equation is 
approximated by Eq. (17), and the kinematically consistent velocities are used. 
To obtain steady-state solutions, time is treated as an iteration parameter. The 
time derivative is retained in the vorticity equation and the vorticity field is 
advanced simultaneously with the temperature field. The largest stable time step 
is used at each gridpoint to maximize the rate of iterative convergence locally. 
This procedure is analogous to Jacobi iteration. For certain ranges of parameters, 
Gauss-Seidel iteration of the energy equation has been used to speed convergence. 
The transport equations are advanced over a time step and the streamfield is 
iterated to convergence by optimized successive overrelaxation. Boundary 
conditions are then applied to update boundary temperature and boundary 
vorticity, completing the advancement. Other methods also have been applied 
to problems of this type. Houston and DeBraemaker [2] discuss application of the 
ADI method. 

The physical problem including boundary conditions and the viscosity law is 
representative of thermal convection in the mantle of the earth. The complete 
base of the enclosure is at unit temperature, the vertical outer boundary is adiabatic, 
and the top is at zero temperature. The vertical outer boundary and base are free 
surfaces (no shear), while the top boundary is rigid (no-slip). The normalized 
kinematic viscosity is given by 

v = exp{B(l + CX)/( 1 + INI)} (29) 

where values of the coefficients B, C, and D are chosen to represent flow due to 
diffusion creep in the mantle. The coefficient C is negative and D is positive so 
that viscosity decreases as either height (x) or temperature increase. 
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Isotherms, streamlines, and contours of constant viscosity are given in Fig. 3 
for a steady-state flow with Ra = 106, B = 54.10, C = -0.326, and D = 0.484. 
A nonuniform spatial mesh was employed; the spacing is shown with tick marks 
along the edge of the enclosure. The strong dependence of viscosity on temperature 
and depth causes the flow to concentrate near the top and axis of the enclosure. 
Large velocity gradients appear in this region and it is here that nonphysical 
results occur with nonconsistent velocities. 

FIG. 3. Steady-state thermal convection with large viscosity variations, Ra = 106. (a) Jso- 
therms. (b) Streamlines. (c) Contours of constant viscosity. 

Anomalies are clearly apparent in the temperature field. Radial temperature 
distributions near the top boundary (one dx below the top) are shown in Fig. 4. 
Figs. 4a and 4b present results for nonconsistent velocities. The results of Fig. 4b 
employ a more refined mesh than those of Fig. 4a. The off-axis temperature peak 
is strictly nonphysical. For these cases the axial velocity at gridpoints near the axis 
also shows an off-axis peak. Refining the mesh reduces the relative magnitude of 
the off-axis temperature peak and further refinement should eliminate the 
anomalies. However, the relatively slow rate of convergence for flows with strongly 
variable viscosity makes the use of more refined meshes undesirable. This is 
particularly true since we are more interested in approximate solutions over a wide 
range of physical conditions than in a few precise solutions at specific conditions. 
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FIG. 4. Radial temperature distributions near the top boundary for steady state thermal 
convection with large viscosity variations, Ra = 105. (a) and (b) Inconsistent velocity fields. 
(c) Consistent velocity fields. 

The anomalous behavior shown in Figs. 4a and 4b is caused by both the failure 
of difference approximations to conserve volume flow and their failure to satisfy 
the circulation theorem. Solutions have been obtained with conserving transport 
velocities, but with gridpoint velocities given by Eq. (7) (which are inconsistent 
with the circulation theorem and a central difference form of the streamfield 
equation). These results show no anomalies in the temperature field, but do show 
an off-axis peak of the axial velocity. Fig. 5c shows results using consistent 
velocities. This result, in contrast to cases a and b, shows no anomalous behavior 
of the temperature or axial velocity. 

CONCLUSIONS 

Kinematically consistent finite difference approximations have been developed 
for velocity fields in cylindrical coordinates. These velocity fields allow volume 
flow to be conserved and the circulation theorem to be identically satisfied both 
locally and globally and lead to the familiar central difference from of the stream- 
field equation. When combined with the transport equations, which also conserve 
both locally and globally, a fully conserving finite difference approximation results. 
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Consistent velocity fields have been applied to thermal convection with highly 
variable viscosity. The consistent velocity fields are essential to obtaining physically 
correct solutions. Physical anomalies result from the failure of velocities to satisfy 
the kinematic conditions imposed by volume flow conservation and the circulation 
theorem. Although the present treatment has been specialized to cylindrical 
coordinates, the approach is readily generalized to other curvilinear coordinate 
systems. In Cartesian coordinates, the velocity approximations reduce to familiar 
central difference forms. 
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